第179号

発 行 名古屋市数学研究会 名数研ホームページ

http://www.meisuuken.com/ 事務局 名古屋市立牧の池中学校内

TEL 704 - 2051 IP 71 - 3536

可能性を秘めた算数・数学

名古屋市学校教育研究会算数・数学部会長

名古屋市立白鳥小学校長 坪 井 丈 典

5年生の担任をしている 頃、子どもたちに自分で考 える力を身に付けてほしい と願い、「考えタイム」とい う時間を設定しました。そ

の時間は、数学的な内容を中心に、時にクイズ 的な要素も交えながら問題を出して、子どもた ちに考えさせていました。その内の一つに、次 のような問題がありました。

【問題】 3人の学生が、一人 1,000 円、合計 3,000円で旅館に宿泊しました。翌日、旅館の 主人が「学生さんだから、3人で2,500円でよ いので、500円お返しします」と言ってくれま した。学生は感謝しつつ「500円だと3人で分 けられないので、300円だけいただきます」と 言って、200円は主人に返し、受け取った300 円を一人100円ずつ分けました。さて、確認し ましょう。100円ずつ返してもらったので、学 生が払った宿泊費は一人 900 円×3 人で 2,700 円。そして、200円は主人に返したので、2,700 +200=2,900 円。あれ、3,000 円だったのに 2,900 円しかない・・。

さて、100円はどこに消えたのでしょう? ご存じの方も多い問題だと思います。この 問題を出した時、私は、ほとんどの子がすぐ にあきらめて、答えを聞きたがると思ってい ました。ところが、子どもたちは、一人でいろ いろと考えてから、解決できないとなると近 くの子と、「どこがおかしいんだろう?」「こ の式は本当に正しいのかな?」「答えじゃなく てヒントが知りたい」などと話し始めたので

今思うと、その時の子どもたちの姿は、ナ ゴヤ学びのコンパスにある「ゆるやかな協働 性の中で自律して学び続ける」姿であったの だろうと思います。この例が適切かどうかは 別にして、算数・数学の学習は、ナゴヤ学びの コンパスの目指したい子どもの姿に直結する 可能性を秘めています。事実、名数研の活動 は、これまで「ゆるやかな協働性」も「自律し て学び続ける」も、様々な方法で行ってきて いると思います。その自負をもって、これか らも研究を重ね、名数研がさらに大きく発展 することを心から願っています。

令和5年度 算数·数学部会 研究大会

見出しの研究大会を、1月17日(水)に教育館で開催しました。

五十嵐 純 先生(赤星小)並びに 久米 大 先生(若水中)の研究発表に 続いて、至学館大学教授 鈴木 正則 先生が「児童生徒が関わり合い高め合う 算数数学の授業づくり」という演題で講演されました。

「講演要旨〕

「21世紀型スキル」「令和の日本型学校教 育」「生きて働く知識」で重要とされている力 を高めるために協同解決型のペア・グループ 学習が効果的に働く。

協同解決型のペア・グループ学習には次の 効果が期待される。

「対話による相互作用」

聞き手から「~をもう1回言って」と言わ れることで、説明が精緻化していく。

「説明することによる学習促進効果」

説明することで、既有知識を足場にしなが ら推論したり、複数の考えを結び付けたり、 既有知識の誤りや不足を修正したりすること で新たな知識を構成することができる。

「モニタリングの効果」

モニタリングする(他者の発言や他者間の 対話を聴くこと)で、自分の考えを見直した り、理解を深めたりすることができる。

ペア・グループ学習 行うにあたり、児童生 徒に協働の意識など社 会的スキルをもつこと ができるようにするこ とが大切である。協働 の意識とは、自分とは

異なる考えに対してどちらが優れているかに とらわれず尊重し、違いから学ぼうという意 識である。

また、グループで話し合い活動をする場合 には、4名が適当である。4名で編成できな い場合は、5名より3名の方が適当である。

見通しをもつ場面などで児童生徒の発言が 少ない場合は全体からグループに戻して話し 合わせる教授方策(グループトーク)を活用 するなど、ペア・グループ学習を目的に応じ て行い、より効果的な指導を目指してほしい。

名数研 研究活動 |実践紹介(中学校)

11 月 17 日の研究部会で発表された A 3 グループの 実践を紹介します。

3年「閲数 v = ax²」

めあて ①単元を通しての学習課題を見付けよう。 ②学習したことを振り返り統合しよう。

く単元を通しての学習課題を見付ける活動(第1時)>

既習の知識だけでは解決が難しかった り、数学を使わず解決すると不都合が生じ たりする日常の場面を設定します

T: 走っている列車上の的にピンポン球を 当てる実験を、1回で成功させるため にはどのようなことを考えればよいで しょうか。

S:計算で答えを求めたいな。

S:ピンポン球の落ちる凍さはどのように なっているのだろう。

T:列車や球の運動はどのようなものです か。

S:列車は等速直線運動でピンポン球は自 由落下運動しています。

S: 等速直線運動は一次関数を使えそうだ ね。

S:自由落下運動はどんな式になるんだろ

単元の導入の課題を、実験させた後に条 件を制限したことで不都合を感じさせる ことができました。多くの生徒が、関数関 係に気付き考察することができました。

く学習したことを振り返り統合する活動 (第2時~)>

問題解決に必要な見方・考え方をフィッ シュボーンチャートにまとめます。それら を使い、単元を通した課題を解決します。

T:これまでに学んだことを用いて、ピン ポン球と列車についての問題を考えま しょう。

S:自由落下の式はどういう式だっけ…フ イッシュボーンチャートを見てみよ う。

S:ピンポン球と列車についての式を計算

だけでなくグ ラフでも考え られるんじゃ ない?

S:求めた値でも う一度実験し てみよう。

< フィッシュホ゛ーンチャート>

ハンバーガー、ジュース、ポテトをセットに

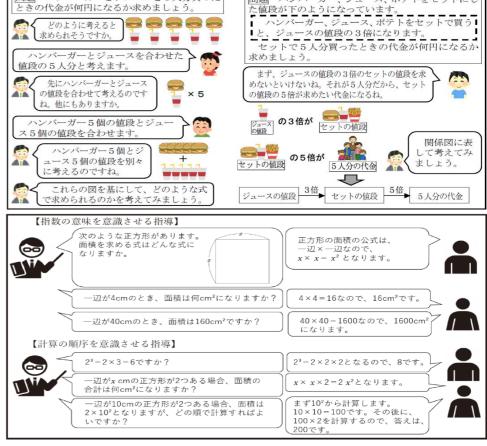
フィッシュボーンチャートで学んだ知識 を統合し、多くの生徒が、実験を成功させ るために必要な数値を式やグラフを用いて 求めることができました。

<小学校>

4年生「式と計算、何倍でしょう」 〇 日常生活や社会の事象を基 にした問題場面を図で表現し て情報を整理させる指導

問題場面を図で表現して情 報を整理する活動を取り入れ ることで、問題場面や数量関 係を具体的に捉えることがで きるようにする。

く中学校>


1年生「文字の式」

〇 指数を含む文字式に文字 の値を代入して式の値を求 めることができるようにす る指導

図形と関連させて、指数の 意味や計算の順序を考えさ せつつ、計算の途中の式を書 かせることで、指数、乗除、 加減の順序に従って計算す る習慣を身に付けさせる。

実態調査 指導事例

ハンバーガーとジュースを5人分買った

